Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene.
نویسندگان
چکیده
Graphene epitaxy on the Si face of a SiC wafer offers monolayer graphene with unique crystal orientation at the wafer-scale. However, due to carrier scattering near vicinal steps and excess bilayer stripes, the size of electrically uniform domains is limited to the width of the terraces extending up to a few microns. Nevertheless, the origin of carrier scattering at the SiC vicinal steps has not been clarified so far. A layer-resolved graphene transfer (LRGT) technique enables exfoliation of the epitaxial graphene formed on SiC wafers and transfer to flat Si wafers, which prepares crystallographically single-crystalline monolayer graphene. Because the LRGT flattens the deformed graphene at the terrace edges and permits an access to the graphene formed at the side wall of vicinal steps, components that affect the mobility of graphene formed near the vicinal steps of SiC could be individually investigated. Here, we reveal that the graphene formed at the side walls of step edges is pristine, and scattering near the steps is mainly attributed by the deformation of graphene at step edges of vicinalized SiC while partially from stripes of bilayer graphene. This study suggests that the two-step LRGT can prepare electrically single-domain graphene at the wafer-scale by removing the major possible sources of electrical degradation.
منابع مشابه
Enhanced transport and transistor performance with oxide seeded high-κ gate dielectrics on wafer-scale epitaxial graphene.
We explore the effect of high-κ dielectric seed layer and overlayer on carrier transport in epitaxial graphene. We introduce a novel seeding technique for depositing dielectrics by atomic layer deposition that utilizes direct deposition of high-κ seed layers and can lead to an increase in Hall mobility up to 70% from as-grown. Additionally, high-κ seeded dielectrics are shown to produce superio...
متن کامل100-GHz transistors from wafer-scale epitaxial graphene.
The high carrier mobility of graphene has been exploited in field-effect transistors that operate at high frequencies. Transistors were fabricated on epitaxial graphene synthesized on the silicon face of a silicon carbide wafer, achieving a cutoff frequency of 100 gigahertz for a gate length of 240 nanometers. The high-frequency performance of these epitaxial graphene transistors exceeds that o...
متن کاملWafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication
In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now,...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Epitaxial Graphene Technology for Quantum Metrology
Graphene grown on silicon carbide by high-temperature annealing (SiC/G) is a strong contender in the race towards large-scale graphene electronics applications. The unique electronic properties of this system lead to a remarkably robust and accurate Hall resistance quantisation of 0.1 parts per billion, making SiC/G devices highly desirable for the endeavour of quantum resistance metrology. How...
متن کاملThe physics of epitaxial graphene on SiC(0001).
Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 16 شماره
صفحات -
تاریخ انتشار 2017